If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13h^2+27h=0
a = 13; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·13·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*13}=\frac{-54}{26} =-2+1/13 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*13}=\frac{0}{26} =0 $
| 40(2x)=320 | | 21 +3p =45 | | w−12=84 | | −15=11−2x | | 3x=8-2(1-x)=1 | | 1x-45=50 | | 30=23+n | | 2w-3=61 | | 10z-20=90 | | 95=t+23 | | k+1=-82 | | 4x+11+11x+19=180 | | 168=-84b | | k+1=-8 | | 0.7x+12=5 | | x/30-4x=9x-9 | | 3x-15=1+5x | | 180=2k+30 | | 5(x+1)^(5)=160 | | 13y+18=17y-14 | | 50=28.1+0,15a | | 3=3(w+1)-6 | | I/4k+3=-5 | | H+3h+8=23 | | Y=0.5x2+2x2-7 | | 0.08x=0.3 | | 3x+15-6=3(x+3) | | 25+1.50=10+3x | | 7x+6=-10+5× | | -1-7n=125 | | 49+x=349 | | 2.8x+7=31 |